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Abstract— We report on the use robotic assets in the investi-
gation of subsea hydrocarbon plumes caused by the blowout,
on 20 April 2010, and subsequent sinking of theDeepwater
Horizon drilling platform in the Gulf of Mexico. We employed
conventional oceanographic sampling techniques along witthe
Sentry autonomous underwater vehicle (AUV) to confirm the
existence of a coherent subsea hydrocarbon plume, then to mpa
the plume’s spatial extent out to 35 km down-current from the
well head, and finally to collect targeted water samples from
within the plume itself for later laboratory analysis. In this
paper we focus on the techniques used to coordinate sampling
activities between the AUV and conventional instrumentaion:
geo-referenced navigation of all data, integrative visudtation
of multi-modal and multi-platform data, real-time telemetry,
visualization, and analysis of data, and the real-time adagation
of vehicle trajectory in response. Our results demonstratethat
when initial characterization is poor, limited human interaction
and feedback can accelerate the study, and improve the analig,
of evolving environmental phenomena. We discuss severakkons
learned, particularly as they apply to the future developmet of

Fig. 1. The Woods Hole Oceanographic Institution AlBéntryon the

I|m|ted-|ntera(;t|on autonomy in SUbS?a r0b0t|c§.. Using ral data deck of the R/VEndeavorbetween deployments. Drilling platforms and other
collected during the Deepwater Horizonexpedition, we present qq inment working at thdeepwater Horizonblowout site are visible in

simulations of semi-automated data interpretation and sarpling  the background. The closest to the site that the vehicle vepioged was
plan adaptation comparable to the real-time actions taken B us 3 nautical miles (5 km). Photo by D. Yoerger.
during the expedition itself.

I. INTRODUCTION

On 20 April 2010, theDeepwater Horizondrilling rig mix, the mixture emanating from the well head is a complex
suffered a blowout that resulted in the eventual sinking @fulti-phase mixture of oil and gases that interacts withsilne
the rig and the death of 11 personnel on board. Prior to thunding water column as it rises. Both controlled experitae
successful capping on 15 July 2010, oil from the damagéﬂ and historical evidence [4] suggest that some constiiie
well head was leaking at a rate whose quantification remaipisthe effluent and/or minute droplets of oil will enter thetera
contentious but undoubtedly represents one of the largest a column forming a subsurface plume with little or no residual
dental releases of oil on record. The environmental impéct BHoyancy. The composition of any subsurface plumes and the
the oil spill depends on a number of incompletely understod@ction of the total oil released that they represent cqudy
characteristics of the spill including composition of thig o @ significant role in the ultimate environmental and ecoromi
its chemical evolution in the environment, the rate andltoténpPact of the spill.
volume of oil released, and the dynamics of its spread. In June 2010 the authors were part of a research cruise

Since shortly after the explosion various sources hate the Gulf of Mexico funded by the United States National
reported the presence of subsurface plumes of oil [1], [Zcience Foundation to identify and characterize any stduseir
Contrary to the elementary notion that oil and water do nptumes associated with thBeepwater Horizonspill. We



employed two principal sampling platforms, a conventional
cable-lowered oceanographic conductivity, temperatare]
depth (CTD) rosette augmented with a TETHYS in situ mass
spectrometer [5] as well as several sensors specificaliyg szl

for the cruise; and the Woods Hole Oceanographic Institigio
SentryAutonomous Underwater Vehicle (AUV) also equipped
with a TETHYS instrument as well as various other water
column sensors (Fig. 1). The lowered CTD included the ghbilit
to collect water samples — crucial to determining the exact
composition of the plume (Fig. 2).

This paper is organized as follows. Sec. Il discusses the
techniques used to coordinate sampling activities between
CTD and AUV for plume localization, plume characterization
and targeted water sampling: geo-referenced navigation of
all data; integrative visualization of multi-modal and il
platform data, real-time telemetry, visualization, andlgsis
of data, and the real-time adaptation of vehicle trajeciary
response. Sec. Il proposes a method for conducting subsea
robotic survey that capitalizes on the increasing avditgbi _ _

. . . . Fig. 2. CTD and rosette being deployed off the REWdeavor Non-standard
and bandwidth of acoustic communications for real-time h\"h’strumentation including the TETHYS in situ mass specet@n and an
man interaction with subsea assets combined with modekiode affixed to the cage on the bottom of the package. Plydfo bicintyre,
machine learning techniques for dimensionality reductiod WHO!
data pre-processing. The method aims to enable human op-

erators to focus on high-level data interpretation and mi oth to the WSW of the site (Fig. 4), encountered water

sion objective formulation when adapting sampling plans. . . L
. " “enriched with hydrocarbons significantly above background
demonstrate the method on data collected duringDsep levels. Together, the CTD an8lentryresulted in a detailed,

water Horizonexpedition using a data-denial methodology tQ” " . . .
. . . . . . multimodal picture of a coherent subsurface plume extendin
simulate real-time vehicle trajectory adaptation and jgea

qualitative assessment of the results relative to actiakert at least 35 km from th@eepwater Horizorsite. The precise

. . . ... nature of that plume, including constituents, their abisolu
by us to adapt vehicle trajectory during the actual expexliti . . ; i
) . . concentrations, and the fraction of oil confined to the plume
We conclude with a discussion of lessons learned.

are discussed in a forthcoming publication in the scientific
Il. SUBSURFACEPLUME LOCALIZATION AT THE literature [6].
Deepwater HorizoBBLOWOUT SITE

A. Acoustic Telemetry
Our ultimate objective was to collect targeted water sasple : . L
Seawater rapidly attenuates electromagnetic radiatem, r

from within any subsurface plumes for later analysis in shor , . : .
. ; . . : . dering radio frequency signals of the type commonly employe
side laboratories. To accomplish this we first had to confirm . .2 . .
. . . In terrestrial communications systems ineffective undeew
the existence of plumes by locating and mapping them. Oyr

o “Acoustic modem systems, e.g. [7], provide a relatively low-
approach cap_ltallzed on the strengths pf our two Samp“rt])%ndwidth (0 km - kpbs [8]) alternative that nevertheless
platforms, while respecting the constraints imposed by th(?Iows for the real-time downlink of a portion of data colied

sensors on board. The lowered CTD was use_d o initially tD(:"J‘Efubsea and for the transmittal of high-level control comdsan
the plume and then to characterise its vertical structuhe

AUV provided a complementary horizontal perspective to the vehicle.Sentry uses a commercial acoustic modem
P b y PETSP X iQtegrated into the USBL navigation system.

Fig. 3 shows the northeast corner of the Gulf of Mexico an This system enables commands to be sent to the vehicle and

the location of theDeepwater Horizorsite off the Louisiana .
: : . data sent from the vehicle to the surface vessel. The amount
coast. With the exception of background water profile mea . . .
: . of data being obtained on the AUV far exceeds the available
surements all subsurface operations during the 10 days WE Jwidth. so we emplov a queuing svstem in which the user
spent on station took place within the area indicated. We con ' ployaq g sy

ducted 23 CTD lowerings including 3 extended deploymen?%nds a message o the vehicle requesting which mformau_on
) . . . should be transmitted back to the surface vessel for human in
in which the instrument package was towed slowly while u

dulating within a prescribed depth interval (a procedurevkm r%erp_retatlon. In addition t_o se_nd_mg |nforma_t|_on r_equeetshe

. : : ehicle, we can transmit mission re-specification commands

in the oceanographic community as a tow-yo). The CTD data _ _, - X X .

: - . 0 achieve tasks such as changing vehicle depth and regaskin

identified a deep subsurface plume tending to the WSW of the : ; . . .
' . e vehicle on new trajectories. This architecture allows u

Deepwater Horizorsite and centered at a depth of 1100 m.

Sentrydived 3 times, covering approximately 240 kilometers 2y - /7 ma. googl e. conf ma ear t h- vect or db/ di sast er /

at depths between 1000 m and 1300 m. Two of these divgslf_oil _spill/km /noaal/ nesdis_anomal y_rs2. kn
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Fig. 3.  Work site location in the Gulf of Mexico off the Lou#sia coast. All AUV and shipboard operations were carriedvathin the white bounds
indicated, an area about 50 nautical miles in length. Forpaoison, the light green outlines show the potential oifiogtprint of the surface plume observed
by NOAA 2010-07-07. The Deepwater Horizorsite is shown located a8° 44.3071’ N, 88°21.9611’ W, based on ship’s radar while working near the
site.

to receive crucial sensor data and, based on the informatgurvey modification, and provided the first visual confirroati

obtained, to retask the vehicle in response. of a coherent subsea plume.
B. Real-time Visualization C. Sentry Dives 064 and 065 — Tracking a Subsurface Oil
Plume

Limited cruise duration, limited a priori information alktou
the plume, and the need to obtain precisely targeted wateiThe first challenge in assessing the extent of the subsurface
samples from within a dynamic phenomenon required thdume was initially locating it. A CTD tow-yo conducted
rapid analysis and visualization of data to devise appab@ri around the periphery of theeepwater Horizorsite registered
sampling strategies and use the available assets efficientitense hydrocarbon anomalies at 1100 m depth to the west-
Leveraging previous work employing the Keyhole Markugouthwest of the well head and weaker anomalies at the same
Language (KML) for the dissemination and visualization oflepth to the northeast. Based on this and other supporting
geo-referenced oceanographic data [9], [10], we providédta we planned a series of AUV surveys aimed at tracking
the science party with near real-time displays of integrat¢he plume down-current of the well head. The goal of these
chemical tracer data from all instruments on board the CT&urveys was to determine the horizontal extent of the plume
and selected ion peaks from the TETHYS mass spectrometed provide the necessary reconnaissance for targeted wate
on board Sentry Fig. 5 shows a screenshot of our dataampling.
visualization part way through AUV dive sentry064, rendere The SentryAUV was deployed on two dives — sentry064
by Google Earth. The image shows aromatic hydrocarband sentry065 — during which the vehicle tracked the plume
fluorimetry from several CTD casts and one tow-yo, real-timaver 30 km down-range from the origin of the plume at the
normalized methane concentration telemetered acougticalell head (Fig. 4). While both dives had identical goals, the
from Sentry and real-time water current profiles generateghanner in which they were conducted differed, and the con-
by the ship’s acoustic Doppler current profiler (ADCP). Thigrasting survey techniques used in either case each pessess
visualization was instrumental in coordinating the sampli advantages and disadvantages. We planned and executed sen-
strategies of the CTD an8entry It aided in site selection try064 in the conventional manner, with the vehicle follogi
and survey design, water sample location selection, me&-t a series of preplanned tracklines designed to repeated$s cr
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Fig. 4. Normalized Methane observed from the TETHYS masstepeeter aboard thBentryAUV during two dives, sentry064 and sentry065, to the west
of the Deepwater Horizorsite. TheDeepwater Horizorsite and 5 km exclusion zone are indicated in the perspeciae.

(a) CTD andSentrydata rendered in Google Earth. (b) Co-chief scientist Dr. Reddy considering the data.

Fig. 5. Real-time data visualization: (a) Screenshot of @@dcarth rendering taken during the cruise and showing Hatrometer data collected over
the preceding days using CTD casts and tow-yos as well as WiSTidass spectrometer data being telemetered acousticaity the AUV in real time; (b)
inspecting the visualisation. Prompt, effective visuatian improved the ability of the science party to coordtnaampling and survey activities as well as
to alter survey plans in real time, enhancing the efficienug effectiveness of operations.

the plume at a constant depth. Real-time acoustic telemetoyrefine the survey depth before continuing with (a modified
from the vehicle was used to select the site for a CTD casgtrsion of) the original survey plan.
that was then conducted during the dive and out of acousticAt 30 km from the well head the hydrocarbon anomaly
range of the vehicle. remained well above the detection threshold of the TETHYS
We designed sentry065 similarly but with the intention dfstrument onSentry however deteriorating weather con-
acoustically manipulating the mission plan in real time. Wditions prevented further AUV deployments and ultimately
planned to cut tracklines short after mass spectrometrg df@rced an end to scientific operations altogether. In taliggs
received acoustically indicated a return to backgroundesl 64 and 65 spanned a total of 61 hours during wrigntry
following a transect of the plume. This strategy was designépent 47.4 hours deployed and covered over 170 km.
to increase the down-current extent of the survey and was em-
ployed successfully early during the dive. Plume intensity
later tracklines exhibited an unexpected decrease in atmi  Our real-time interactions witSentryyielded scientifically
prompting us to dramatically alt3entry’smission plan, first more productive dives but also required us to engage in
to reacquire the plume closer to the well head, and then latew-level data processing and trajectory-level mission re

I1l. SEMI-AUTONOMOUS SUBSEA ROBOTIC SURVEY



specification. As subsea robots become more sophisticated
the number of robots concurrently in the water increase, t
scope for low-level interactions will decrease commenslya
Human oversight will remain valuable but must transition t
higher-level interaction. This will require enhanced auatmy
on the part of the robots themselves. In this section we dgsct
the performance of a semi-autonomous method for subs
robotic survey applied, via data-denial simulation, toediv
sentry064.

Our method applies the classical sense-plan-adapt (St
approach to robotic decision making but with high-leve
human input at each stage of the cycle. Our primary ai
is to reduce the cognitive load on human operators whi
still leveraging human skill in high-level decision making
This aim aligns well with the reality of limited bandwidth
acoustic communications—data pre-processing carriedwut
tonomously subsea can reduce the bandwidth required
telemeter data to the surface; a robot capable of interyeti
high level objectives rather than direct trajectory speatfon
will also likely reduce the bandwidth required to transmi
control commands. The motivations behind our particuli
implementation of each stage of the SPA cycle is discuss
subsequently.

a) Sense:Various authors have reported on the use «
AUVs to trace and/or map both synthetic and naturally occL
ring turbulent plumes, e.g. [11]-[15]. A necessary commbne
of any of these methods is a mechanism for deciding wr
sensor readings represent contaminated plume water vel
background water. Such mechanisms become more diffic
to construct when, as in our case, the signature of the plu
within data from the various sensors available was inytiall
unknown.

The sensor suite on boaRentrywas chosen by scientists 4
based on expert knowledge of the likely chemical constifsier
of a subsea hydrocarbon plume; nevertheless, significant ..

CerFainty remaineq Con(_:eming the preseljce, I’ekitiveEmmCFig. 6. All 11 scalar chemical sensor data streams inteigwlaonto

trations, and manifestation of these constituents in tmS®e the timebase of the TETHYS instrument and classified intor fdistinct

data. Ultimately the methane measurement produced by f@gponents of a Gaussian Mixture Model. Semantic labelnthieee classes,
TETHYS instrument provided the most reliable indicaFioﬁl?gjéfg&%ﬁﬁgﬂ;(Elrlési)ae%”%yoghﬁ{”gﬁ?n’ reptizgewo distinct

of plume presence; however, this knowledge was unavailable

prior to human analysis of all sensor data streams.

Our approach to automated plume detection considers all 11
available scalar sensor data streams together as vedtmayvadistributed (i.i.d.) when conditioned on their class labiéd
data, sorts these into statistically distinct classes,raliels on Principal feature, besides rapid execution, is that thehoubt
human interpretation to provide a semantic label for eaahscl @utomatically infers the number of classes present in the. da
as either plume, background, or other. Parametrized titatis Fig- 6 shows the classified output produced after semantic
models for each class are learned as part of the procedi@feling by a human. The algorithm appears to have impjicit|

meaning the robot can autonomously apply semantic labelsdgntified methane (mz15) and optical backscatter (OBS) as
subsequently acquired data. indicative of a distinct class (labeled plume and shown @),re

The model used for classification in this paper is th@nd has also successfully identified two periods of anonsalou

(VDP) [16]. This model is a mean-field variational approxima@nd both shown in green).

tion of a Dirichlet Process Mixture Model (DPMM) [17], [18]. As yet our classification process exploits no notion of gpati
Important assumptions made in this paper are that obsengaticoherency in the environmental phenomena of interest. &Vhil
are distinctly multimodal, can be represented using a Gausswe have attained promising classification results despite t
Mixture Model (GMM), and are independently and identicallyo adapt vehicle trajectory some mechanism for performing

mz15n

mz27n

mz43n

mz57n

mz78n

_ptempmz128n

shed9_salbed9

getd_ptempcetd_salinity  obs




inference over the spatial domain of the survey area is oftéaration of the MDP.
necessary. Fig. 7 shows a snapshot of a simulation produced by
b) Plan: Several spatial inference methods specific tdenying data to the sensing stage of the SPA cycle from
robotic plume mapping as applied especially to plume sourtackline segments aborted by the MDP. At the instant shown
localisation exist [14], [19]-[22]. Like [19] our approachthe simulation has correctly avoided completing the sauthe
employs a Mixture of Gaussian Processes (MGP) to modaid of a pair of tracklines relatively far from the plume. A
the spatial coherence of the plume and background; howewgwpd GMM for classification was attained after completion of
because our output space is 11-dimensional rather thareaa sca few tracklines and did not require relearning or relalgelin
chemical concentration, we perform a logistic regressizgr o until the anomalous OBS data appeared later in the dive.
the scalar class labels to avoid learning the parametersiaf wThe GPC appeared less convincing—although the learned
would otherwise become a multivariate MGP. This is knownyperparameters varied little, the correlation lengthlesxa
as Gaussian Process Classification (GPC) [23]. determined were short relative to the length scale impoged b
Once the hyperparameters of the mixture components haweer-trackline spacing on the survey. This lack of pradect
been learned GPC regression provides a way to extrapokatedhrtainty distant from existing data may be the source of an
probability of observing each semantically labeled clasthe observed sensitivity in the decision process to the nurakric
spatial domain of the survey (Fig. 7). On the basis of this,mayalues of the rewards specified in the objective function.
an agent can plan by evaluating the expected outcome o&futur
actions relative to a specified objective function, for &mste, . )
[24] traded off information gain with traversal cost to geate Several aspects of this work bear directly the current and

IV. DISCUSSION ANDCONCLUSIONS

constrained maximum entropy sampling plans. future use of robotics for environmental monitoring:
In practise, developing good objective functions in the 1) The time and spatial scales associated with dynamic
dynamic setting of a scientific expedition remains chaliegg features in an environment should drive sampling plan

On the other hand, scientists and operators try to design pre  design as well as the selection of appropriate instru-
programmed AUV surveys in a way that encapsulates key mentation, including the use of autonomous platforms.
objectives, some of which, like coordination with otheretss In our case an AUV offered maneuverability and speed
and weather considerations, would be difficult to encode in ~ advantages over a cable-lowered CTD for reconnoitering
a useful objective function because they depend on external the horizontal extent of a subsurface hydrocarbon plume,
circumstances not readily sensed by a deployed robot. We but was most effective in concert with the CTD.

propose that limiting the scope of autonomous planning to2) Real-time transmission of data from autonomous plat-
modifications of the pre-planned mission can retain good forms can augment the effectiveness of these platforms

performance relative to these hard-to-codify objectivas by enabling operators to deploy other assets before

if designed with autonomous adaptation in mind, also benefit ~ conditions change. We used the real-time AUV data to

from autonomous decision making. inform the sampling strategy of the CTD and to target
c) Act: Dive sentry064 (Fig 4) was designed to pro- water samples.

vide multiple down-current horizontal crossings througle t 3) Some environmental monitoring tasks are characterized
hydrocarbon plume, under the assumption that the current by relatively large swaths of uninteresting terrain. In
would cause the plume to spread along isobaths to the WSW. these circumstances, we stand to gain the most from
The increasing amplitude of the zigzag trajectory specified adaptive survey. In our case, we adapted the cruise plan
in the mission plan reflected our uncertainty about plume to data as it became available, and, on a finer scale, we
spreading rate and the precise direction of the current. The also adapted the AUV’s trajectory to more effectively
large amplitude of the survey tracklines in relation to the  sample the feature of interest.
width of the plume encountered represents an inefficiency4) Human intervention may increase the scientific yield
that might have been mitigated by terminating tracklines  Of robotic surveys, but any increased value must be
early, as was commanded by human operators via acoustic traded off against the opportunity cost of demanding
link on sentry065. This might also have been accomplished @ human’s attention. There is a pressing need to de-
autonomously had an appropriate objective function and set Velop autonomous and semi-autonomous data process-
of admissible control actions been available. ing and adaptive survey methods that reflect the real
To test this supposition, we ran a Markov Decision Process  challenges of incompletely characterized environmental
(MDP) over the 4 segments of each trackline, allowing the ~ phenomena, limited processing power and communica-
MDP, upon completion of each segment, to select whether tions bandwidth, and limited endurance.
to continue on to the next segment or else abandon theBased on these observations, we developed a semi-
rest of the trackline. The MDP was rewarded for completingupervised method for adaptive survey that conceivablydcou
segments likely, based on the output of the GPC, to encourttewve reduced the time spent by the AUV outside the plume
plume, and penalised for completing segments likely to padsring dive sentry064 without requiring intensive operato
exclusively through background. This approach is myopic interaction. The comparison with sentry065 is instructive
the sense that the GPC regression is regarded as truth at @ehsentry065 intensive human interaction was required to
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Fig. 7. Data-denial simulation of semi-autonomous adapixecution of sentry064 part way through the run. The cdleieles represent data classified as
plume (red) or background (blue). The entire domain of theesuis colored according to the GPC regression, with blagkasenting maximum ambiguity,
that is an equal chance of either plume or background.

reacquire the plume signal. Our approach to semi-autonemalie ABE/Sentryteam provided excellent vehicle operational
adaptive survey relies on a sensible pre-planned missiad- Rsupport and we are grateful to Andy Billings, Alan Duester,
ical changes to the mission plan like that required in s@@by and Scott McCue for their efforts before and during the euis
would require a more complex 3-dimensional environmental
model, a far more complete set of admissible control actions
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