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Abstract— We report on the use robotic assets in the investi-
gation of subsea hydrocarbon plumes caused by the blowout,
on 20 April 2010, and subsequent sinking of theDeepwater
Horizon drilling platform in the Gulf of Mexico. We employed
conventional oceanographic sampling techniques along with the
Sentry autonomous underwater vehicle (AUV) to confirm the
existence of a coherent subsea hydrocarbon plume, then to map
the plume’s spatial extent out to 35 km down-current from the
well head, and finally to collect targeted water samples from
within the plume itself for later laboratory analysis. In th is
paper we focus on the techniques used to coordinate sampling
activities between the AUV and conventional instrumentation:
geo-referenced navigation of all data, integrative visualization
of multi-modal and multi-platform data, real-time telemet ry,
visualization, and analysis of data, and the real-time adaptation
of vehicle trajectory in response. Our results demonstratethat
when initial characterization is poor, limited human interaction
and feedback can accelerate the study, and improve the analysis,
of evolving environmental phenomena. We discuss several lessons
learned, particularly as they apply to the future development of
limited-interaction autonomy in subsea robotics. Using real data
collected during the Deepwater Horizonexpedition, we present
simulations of semi-automated data interpretation and sampling
plan adaptation comparable to the real-time actions taken by us
during the expedition itself.

I. I NTRODUCTION

On 20 April 2010, theDeepwater Horizondrilling rig
suffered a blowout that resulted in the eventual sinking of
the rig and the death of 11 personnel on board. Prior to the
successful capping on 15 July 2010, oil from the damaged
well head was leaking at a rate whose quantification remains
contentious but undoubtedly represents one of the largest acci-
dental releases of oil on record. The environmental impact of
the oil spill depends on a number of incompletely understood
characteristics of the spill including composition of the oil,
its chemical evolution in the environment, the rate and total
volume of oil released, and the dynamics of its spread.

Since shortly after the explosion various sources have
reported the presence of subsurface plumes of oil [1], [2].
Contrary to the elementary notion that oil and water do not

Fig. 1. The Woods Hole Oceanographic Institution AUVSentry on the
deck of the R/VEndeavorbetween deployments. Drilling platforms and other
equipment working at theDeepwater Horizonblowout site are visible in
the background. The closest to the site that the vehicle was deployed was
3 nautical miles (5 km). Photo by D. Yoerger.

mix, the mixture emanating from the well head is a complex
multi-phase mixture of oil and gases that interacts with thesur-
rounding water column as it rises. Both controlled experiments
[3] and historical evidence [4] suggest that some constituents
of the effluent and/or minute droplets of oil will enter the water
column forming a subsurface plume with little or no residual
buoyancy. The composition of any subsurface plumes and the
fraction of the total oil released that they represent couldplay
a significant role in the ultimate environmental and economic
impact of the spill.

In June 2010 the authors were part of a research cruise
to the Gulf of Mexico funded by the United States National
Science Foundation to identify and characterize any subsurface
plumes associated with theDeepwater Horizonspill. We



employed two principal sampling platforms, a conventional
cable-lowered oceanographic conductivity, temperature,and
depth (CTD) rosette augmented with a TETHYS in situ mass
spectrometer [5] as well as several sensors specifically selected
for the cruise; and the Woods Hole Oceanographic Institution’s
SentryAutonomous Underwater Vehicle (AUV) also equipped
with a TETHYS instrument as well as various other water
column sensors (Fig. 1). The lowered CTD included the ability
to collect water samples — crucial to determining the exact
composition of the plume (Fig. 2).

This paper is organized as follows. Sec. II discusses the
techniques used to coordinate sampling activities betweenthe
CTD and AUV for plume localization, plume characterization,
and targeted water sampling: geo-referenced navigation of
all data; integrative visualization of multi-modal and multi-
platform data, real-time telemetry, visualization, and analysis
of data, and the real-time adaptation of vehicle trajectoryin
response. Sec. III proposes a method for conducting subsea
robotic survey that capitalizes on the increasing availability
and bandwidth of acoustic communications for real-time hu-
man interaction with subsea assets combined with modern
machine learning techniques for dimensionality reductionand
data pre-processing. The method aims to enable human op-
erators to focus on high-level data interpretation and mis-
sion objective formulation when adapting sampling plans. We
demonstrate the method on data collected during theDeep-
water Horizonexpedition using a data-denial methodology to
simulate real-time vehicle trajectory adaptation and provide a
qualitative assessment of the results relative to actions taken
by us to adapt vehicle trajectory during the actual expedition.
We conclude with a discussion of lessons learned.

II. SUBSURFACEPLUME LOCALIZATION AT THE

Deepwater HorizonBLOWOUT SITE

Our ultimate objective was to collect targeted water samples
from within any subsurface plumes for later analysis in shore-
side laboratories. To accomplish this we first had to confirm
the existence of plumes by locating and mapping them. Our
approach capitalized on the strengths of our two sampling
platforms, while respecting the constraints imposed by the
sensors on board. The lowered CTD was used to initially locate
the plume and then to characterise its vertical structure. The
AUV provided a complementary horizontal perspective.

Fig. 3 shows the northeast corner of the Gulf of Mexico and
the location of theDeepwater Horizonsite off the Louisiana
coast. With the exception of background water profile mea-
surements all subsurface operations during the 10 days we
spent on station took place within the area indicated. We con-
ducted 23 CTD lowerings including 3 extended deployments
in which the instrument package was towed slowly while un-
dulating within a prescribed depth interval (a procedure known
in the oceanographic community as a tow-yo). The CTD data
identified a deep subsurface plume tending to the WSW of the
Deepwater Horizonsite and centered at a depth of 1100 m.
Sentrydived 3 times, covering approximately 240 kilometers
at depths between 1000 m and 1300 m. Two of these dives,

Fig. 2. CTD and rosette being deployed off the R/VEndeavor. Non-standard
instrumentation including the TETHYS in situ mass spectrometer and an
optode affixed to the cage on the bottom of the package. Photo by C. McIntyre,
WHOI

both to the WSW of the site (Fig. 4), encountered water
enriched with hydrocarbons significantly above background
levels. Together, the CTD andSentryresulted in a detailed,
multimodal picture of a coherent subsurface plume extending
at least 35 km from theDeepwater Horizonsite. The precise
nature of that plume, including constituents, their absolute
concentrations, and the fraction of oil confined to the plume
are discussed in a forthcoming publication in the scientific
literature [6].

A. Acoustic Telemetry

Seawater rapidly attenuates electromagnetic radiation, ren-
dering radio frequency signals of the type commonly employed
in terrestrial communications systems ineffective underwater.
Acoustic modem systems, e.g. [7], provide a relatively low-
bandwidth (40 km · kpbs [8]) alternative that nevertheless
allows for the real-time downlink of a portion of data collected
subsea and for the transmittal of high-level control commands
to the vehicle.Sentry uses a commercial acoustic modem
integrated into the USBL navigation system.

This system enables commands to be sent to the vehicle and
data sent from the vehicle to the surface vessel. The amount
of data being obtained on the AUV far exceeds the available
bandwidth, so we employ a queuing system in which the user
sends a message to the vehicle requesting which information
should be transmitted back to the surface vessel for human in-
terpretation. In addition to sending information requeststo the
vehicle, we can transmit mission re-specification commands
to achieve tasks such as changing vehicle depth and retasking
the vehicle on new trajectories. This architecture allows us

2http://mw1.google.com/mw-earth-vectordb/disaster/
gulf_oil_spill/kml/noaa/nesdis_anomaly_rs2.kml



Fig. 3. Work site location in the Gulf of Mexico off the Louisiana coast. All AUV and shipboard operations were carried outwithin the white bounds
indicated, an area about 50 nautical miles in length. For comparison, the light green outlines show the potential oilingfootprint of the surface plume observed
by NOAA 2010-07-072. The Deepwater Horizonsite is shown located at28o 44.3071′ N, 88o21.9611′ W, based on ship’s radar while working near the
site.

to receive crucial sensor data and, based on the information
obtained, to retask the vehicle in response.

B. Real-time Visualization

Limited cruise duration, limited a priori information about
the plume, and the need to obtain precisely targeted water
samples from within a dynamic phenomenon required the
rapid analysis and visualization of data to devise appropriate
sampling strategies and use the available assets efficiently.
Leveraging previous work employing the Keyhole Markup
Language (KML) for the dissemination and visualization of
geo-referenced oceanographic data [9], [10], we provided
the science party with near real-time displays of integrated
chemical tracer data from all instruments on board the CTD
and selected ion peaks from the TETHYS mass spectrometer
on board Sentry. Fig. 5 shows a screenshot of our data
visualization part way through AUV dive sentry064, rendered
by Google Earth. The image shows aromatic hydrocarbon
fluorimetry from several CTD casts and one tow-yo, real-time
normalized methane concentration telemetered acoustically
from Sentry, and real-time water current profiles generated
by the ship’s acoustic Doppler current profiler (ADCP). This
visualization was instrumental in coordinating the sampling
strategies of the CTD andSentry. It aided in site selection
and survey design, water sample location selection, real-time

survey modification, and provided the first visual confirmation
of a coherent subsea plume.

C. Sentry Dives 064 and 065 — Tracking a Subsurface Oil
Plume

The first challenge in assessing the extent of the subsurface
plume was initially locating it. A CTD tow-yo conducted
around the periphery of theDeepwater Horizonsite registered
intense hydrocarbon anomalies at 1100 m depth to the west-
southwest of the well head and weaker anomalies at the same
depth to the northeast. Based on this and other supporting
data we planned a series of AUV surveys aimed at tracking
the plume down-current of the well head. The goal of these
surveys was to determine the horizontal extent of the plume
and provide the necessary reconnaissance for targeted water
sampling.

The SentryAUV was deployed on two dives — sentry064
and sentry065 — during which the vehicle tracked the plume
over 30 km down-range from the origin of the plume at the
well head (Fig. 4). While both dives had identical goals, the
manner in which they were conducted differed, and the con-
trasting survey techniques used in either case each possessed
advantages and disadvantages. We planned and executed sen-
try064 in the conventional manner, with the vehicle following
a series of preplanned tracklines designed to repeatedly cross



Fig. 4. Normalized Methane observed from the TETHYS mass spectrometer aboard theSentryAUV during two dives, sentry064 and sentry065, to the west
of the Deepwater Horizonsite. TheDeepwater Horizonsite and 5 km exclusion zone are indicated in the perspectiveview.

(a) CTD andSentrydata rendered in Google Earth. (b) Co-chief scientist Dr. Reddy considering the data.

Fig. 5. Real-time data visualization: (a) Screenshot of Google Earth rendering taken during the cruise and showing bothfluorometer data collected over
the preceding days using CTD casts and tow-yos as well as TETHYS mass spectrometer data being telemetered acoustically from the AUV in real time; (b)
inspecting the visualisation. Prompt, effective visualization improved the ability of the science party to coordinate sampling and survey activities as well as
to alter survey plans in real time, enhancing the efficiency and effectiveness of operations.

the plume at a constant depth. Real-time acoustic telemetry
from the vehicle was used to select the site for a CTD cast
that was then conducted during the dive and out of acoustic
range of the vehicle.

We designed sentry065 similarly but with the intention of
acoustically manipulating the mission plan in real time. We
planned to cut tracklines short after mass spectrometry data
received acoustically indicated a return to background values
following a transect of the plume. This strategy was designed
to increase the down-current extent of the survey and was em-
ployed successfully early during the dive. Plume intensityon
later tracklines exhibited an unexpected decrease in magnitude,
prompting us to dramatically alterSentry’smission plan, first
to reacquire the plume closer to the well head, and then later

to refine the survey depth before continuing with (a modified
version of) the original survey plan.

At 30 km from the well head the hydrocarbon anomaly
remained well above the detection threshold of the TETHYS
instrument onSentry; however deteriorating weather con-
ditions prevented further AUV deployments and ultimately
forced an end to scientific operations altogether. In total,dives
64 and 65 spanned a total of 61 hours during whichSentry
spent 47.4 hours deployed and covered over 170 km.

III. SEMI-AUTONOMOUSSUBSEA ROBOTIC SURVEY

Our real-time interactions withSentryyielded scientifically
more productive dives but also required us to engage in
low-level data processing and trajectory-level mission re-



specification. As subsea robots become more sophisticated and
the number of robots concurrently in the water increase, the
scope for low-level interactions will decrease commensurately.
Human oversight will remain valuable but must transition to
higher-level interaction. This will require enhanced autonomy
on the part of the robots themselves. In this section we discuss
the performance of a semi-autonomous method for subsea
robotic survey applied, via data-denial simulation, to dive
sentry064.

Our method applies the classical sense-plan-adapt (SPA)
approach to robotic decision making but with high-level
human input at each stage of the cycle. Our primary aim
is to reduce the cognitive load on human operators while
still leveraging human skill in high-level decision making.
This aim aligns well with the reality of limited bandwidth
acoustic communications—data pre-processing carried outau-
tonomously subsea can reduce the bandwidth required to
telemeter data to the surface; a robot capable of interpreting
high level objectives rather than direct trajectory specification
will also likely reduce the bandwidth required to transmit
control commands. The motivations behind our particular
implementation of each stage of the SPA cycle is discussed
subsequently.

a) Sense:Various authors have reported on the use of
AUVs to trace and/or map both synthetic and naturally occur-
ring turbulent plumes, e.g. [11]–[15]. A necessary component
of any of these methods is a mechanism for deciding what
sensor readings represent contaminated plume water versus
background water. Such mechanisms become more difficult
to construct when, as in our case, the signature of the plume
within data from the various sensors available was initially
unknown.

The sensor suite on boardSentrywas chosen by scientists
based on expert knowledge of the likely chemical constituents
of a subsea hydrocarbon plume; nevertheless, significant un-
certainty remained concerning the presence, relative concen-
trations, and manifestation of these constituents in the sensor
data. Ultimately the methane measurement produced by the
TETHYS instrument provided the most reliable indication
of plume presence; however, this knowledge was unavailable
prior to human analysis of all sensor data streams.

Our approach to automated plume detection considers all 11
available scalar sensor data streams together as vector-valued
data, sorts these into statistically distinct classes, andrelies on
human interpretation to provide a semantic label for each class
as either plume, background, or other. Parametrized statistical
models for each class are learned as part of the procedure,
meaning the robot can autonomously apply semantic labels to
subsequently acquired data.

The model used for classification in this paper is the
Bayesian, non-parametric, Variational Dirichlet Processmodel
(VDP) [16]. This model is a mean-field variational approxima-
tion of a Dirichlet Process Mixture Model (DPMM) [17], [18].
Important assumptions made in this paper are that observations
are distinctly multimodal, can be represented using a Gaussian
Mixture Model (GMM), and are independently and identically

Fig. 6. All 11 scalar chemical sensor data streams interpolated onto
the timebase of the TETHYS instrument and classified into four distinct
components of a Gaussian Mixture Model. Semantic labeling as three classes,
plume (red), background (blue), and other (green, representing two distinct
mixture components) was provided by a human.

distributed (i.i.d.) when conditioned on their class label. Its
principal feature, besides rapid execution, is that the method
automatically infers the number of classes present in the data.
Fig. 6 shows the classified output produced after semantic
labeling by a human. The algorithm appears to have implicitly
identified methane (mz15) and optical backscatter (OBS) as
indicative of a distinct class (labeled plume and shown in red),
and has also successfully identified two periods of anomalous
behavior in the OBS sensor as a distinct classes (labeled other
and both shown in green).

As yet our classification process exploits no notion of spatial
coherency in the environmental phenomena of interest. While
we have attained promising classification results despite this,
to adapt vehicle trajectory some mechanism for performing



inference over the spatial domain of the survey area is often
necessary.

b) Plan: Several spatial inference methods specific to
robotic plume mapping as applied especially to plume source
localisation exist [14], [19]–[22]. Like [19] our approach
employs a Mixture of Gaussian Processes (MGP) to model
the spatial coherence of the plume and background; however,
because our output space is 11-dimensional rather than a scalar
chemical concentration, we perform a logistic regression over
the scalar class labels to avoid learning the parameters of what
would otherwise become a multivariate MGP. This is known
as Gaussian Process Classification (GPC) [23].

Once the hyperparameters of the mixture components have
been learned GPC regression provides a way to extrapolate the
probability of observing each semantically labeled class to the
spatial domain of the survey (Fig. 7). On the basis of this map,
an agent can plan by evaluating the expected outcome of future
actions relative to a specified objective function, for instance,
[24] traded off information gain with traversal cost to generate
constrained maximum entropy sampling plans.

In practise, developing good objective functions in the
dynamic setting of a scientific expedition remains challenging.
On the other hand, scientists and operators try to design pre-
programmed AUV surveys in a way that encapsulates key
objectives, some of which, like coordination with other assets
and weather considerations, would be difficult to encode in
a useful objective function because they depend on external
circumstances not readily sensed by a deployed robot. We
propose that limiting the scope of autonomous planning to
modifications of the pre-planned mission can retain good
performance relative to these hard-to-codify objectives,and
if designed with autonomous adaptation in mind, also benefit
from autonomous decision making.

c) Act: Dive sentry064 (Fig 4) was designed to pro-
vide multiple down-current horizontal crossings through the
hydrocarbon plume, under the assumption that the current
would cause the plume to spread along isobaths to the WSW.
The increasing amplitude of the zigzag trajectory specified
in the mission plan reflected our uncertainty about plume
spreading rate and the precise direction of the current. The
large amplitude of the survey tracklines in relation to the
width of the plume encountered represents an inefficiency
that might have been mitigated by terminating tracklines
early, as was commanded by human operators via acoustic
link on sentry065. This might also have been accomplished
autonomously had an appropriate objective function and set
of admissible control actions been available.

To test this supposition, we ran a Markov Decision Process
(MDP) over the 4 segments of each trackline, allowing the
MDP, upon completion of each segment, to select whether
to continue on to the next segment or else abandon the
rest of the trackline. The MDP was rewarded for completing
segments likely, based on the output of the GPC, to encounter
plume, and penalised for completing segments likely to pass
exclusively through background. This approach is myopic in
the sense that the GPC regression is regarded as truth at each

iteration of the MDP.
Fig. 7 shows a snapshot of a simulation produced by

denying data to the sensing stage of the SPA cycle from
trackline segments aborted by the MDP. At the instant shown
the simulation has correctly avoided completing the southern
end of a pair of tracklines relatively far from the plume. A
good GMM for classification was attained after completion of
a few tracklines and did not require relearning or relabeling
until the anomalous OBS data appeared later in the dive.
The GPC appeared less convincing—although the learned
hyperparameters varied little, the correlation length scales
determined were short relative to the length scale imposed by
inter-trackline spacing on the survey. This lack of predictive
certainty distant from existing data may be the source of an
observed sensitivity in the decision process to the numerical
values of the rewards specified in the objective function.

IV. D ISCUSSION ANDCONCLUSIONS

Several aspects of this work bear directly the current and
future use of robotics for environmental monitoring:

1) The time and spatial scales associated with dynamic
features in an environment should drive sampling plan
design as well as the selection of appropriate instru-
mentation, including the use of autonomous platforms.
In our case an AUV offered maneuverability and speed
advantages over a cable-lowered CTD for reconnoitering
the horizontal extent of a subsurface hydrocarbon plume,
but was most effective in concert with the CTD.

2) Real-time transmission of data from autonomous plat-
forms can augment the effectiveness of these platforms
by enabling operators to deploy other assets before
conditions change. We used the real-time AUV data to
inform the sampling strategy of the CTD and to target
water samples.

3) Some environmental monitoring tasks are characterized
by relatively large swaths of uninteresting terrain. In
these circumstances, we stand to gain the most from
adaptive survey. In our case, we adapted the cruise plan
to data as it became available, and, on a finer scale, we
also adapted the AUV’s trajectory to more effectively
sample the feature of interest.

4) Human intervention may increase the scientific yield
of robotic surveys, but any increased value must be
traded off against the opportunity cost of demanding
a human’s attention. There is a pressing need to de-
velop autonomous and semi-autonomous data process-
ing and adaptive survey methods that reflect the real
challenges of incompletely characterized environmental
phenomena, limited processing power and communica-
tions bandwidth, and limited endurance.

Based on these observations, we developed a semi-
supervised method for adaptive survey that conceivably could
have reduced the time spent by the AUV outside the plume
during dive sentry064 without requiring intensive operator
interaction. The comparison with sentry065 is instructive.
On sentry065 intensive human interaction was required to



Fig. 7. Data-denial simulation of semi-autonomous adaptive execution of sentry064 part way through the run. The colored circles represent data classified as
plume (red) or background (blue). The entire domain of the survey is colored according to the GPC regression, with black representing maximum ambiguity,
that is an equal chance of either plume or background.

reacquire the plume signal. Our approach to semi-autonomous
adaptive survey relies on a sensible pre-planned mission. Rad-
ical changes to the mission plan like that required in sentry065
would require a more complex 3-dimensional environmental
model, a far more complete set of admissible control actions,
and a consequently much more complex decision process.
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