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Abstract—We examine the problem of collecting data from an
underwater sensor network using an autonomous underwater
vehicle (AUV). The sensors in the network are equipped with
acoustic modems that provide noisy, range-limited commuia-
tion to the AUV. One challenge in this scenario is to plan path
that maximize the information collected and minimize travd
time. While executing a path, the AUV can improve performane
by communicating with multiple nodes in the network at once.
Such multi-node communication requires a scheduling protool
that is robust to channel variations and interference. To stve
this problem, we develop and test a multiple access control
protocol for the underwater data collection scenario. We pgorm
simulated experiments that utilize a realistic model of acuostic
communication taken from experimental test data. These simla-
tions demonstrate that properly designed scheduling proteols are
essential for choosing the appropriate path planning algathms
for data collection.

Index Terms—path planning algorithms, acoustic communica-
tion, underwater robotics, sensor networks

|. INTRODUCTION

underwater vehicle (AUV) equipped with an acoustic modem
to gather data from the sensors [4]. In the applications of
interest, sensors are deployed for long-term monitoring an
are fixed to the ocean flodrHence, we have a robotic sensor
network that includes stationary measurement nodes and an
AUV that gathers data from these nodes. The problem now
becomes one of planning the AUV’s path to minimize its travel
time and maximize information gathered. We will refer tcsthi

as the Communication-Constrained Data Collection Problem
(CC-DCP).

In our prior work, we showed that the CC-DCP is closely re-
lated to the classical Traveling Salesperson Problem (T3P)
The key difference is that information is gathered from sess
through a noisy channel, whose reliability decreases with
distance and can be modeled probabilistically. We preWous
showed that the CC-DCP can be modeled as a TSP with
probabilistic neighborhoods, and we provided algorithhat t
solve the problem approximately [6].

Related problems have been studied in the context of robotic

HE use of sensor fields to monitor phenomena in undetata mules. Bhadauria and Isler developed approximation
water environments is of growing interest. Examples iralgorithms for multiple data mules that must traverse a@ens

clude algal blooms [1], seismic activity, and intrusion néeny field and download data [7]. In their work, downloading time
submarines [2]. In underwater monitoring scenarios, maig/considered as part of the tour, and the communication radi
standard methods of communication are no longer feasilaee assumed to be uniform, fixed, and deterministic (i.¢a da

(e.g., WiFi, cellular, satellite). Acoustic modems can\jide

from a sensor is known to be accessible at a given location).

communication underwater, but they suffer from severe @anasilescu et al. demonstrated a system of mobile and station

limitations and channel variations [3].

nodes for underwater data collection based on the use of both

Without reliable communication, collecting data from uneptical and acoustic communication [4]. They described the
derwater sensor networks becomes a challenging problemtworking architecture and sensor specifications negessa
A potential solution is the use of a mobile autonomousr underwater data collection, and they presented exetisn
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in the field on a mobile network. These experiments demon-
strate the feasibility of utilizing AUVs for underwater dat
collection, but the authors leave open the problem of both
path planning and communication scheduling.

Algorithms in prior work were designed under the assump-
tion that the AUV would only communicate with a single node
at a time. To overcome this limitation, we develop a scheduli
protocol that allows the AUV to communicate with multiple
nodes at once while performing the tour. In this paper, we
design and test a Time Division Multiple Access (TDMA)
based protocol and use the results to select parameters for a
AUV path planning algorithm. The key novelty of this paper

lIn some cases the nodes may move slowly over time. If we make th
assumption that the nodes are nearly stationary for a giata collection
interval, our methods apply to these cases as well.



is the use of scheduling protocols to inform path planning [1l. PLANNING ALGORITHMS
methods for AUVs. The proposed methods are validated\ypile it is possible to calculate a single best placement for

through simulated experiments that utilize models built APe AUV to maximize information gathered, it is significant|
experimental data from an AUV deployment. more difficult to find a maximally informative information

Il. PROBLEM SETUP gathering path. In fact, the resulting CC-DCP problem is a
. ) generalization of the TSP, which makes it NP-hard. Due to
We are given a pre-deployed network bfsensors located the computational intractability of finding an optimal tdior

in R%™_ For this paper, we limit analysis téim ¢ {2,3}, works with des. heuristi ¢ |
which yields the 2D and 3D problems respectively. We assurﬂ? WOrks with many nodes, heunstics are necessary 1o solve

that the locationz,, € R*™ is given for each sensor € S, the .gC'DCf:P approximately. In prflor Wolrk, V\{)e bl_r|1_troducedd
whereS is the set of deployed sensors. Each sensmontains :hg Iseer?sgrsgzzzralzltrill?ziﬁontt?]:;Se Ocoer?tgirspr;s aif' Italear(\)/\l;:re
data for retrieval, which we denote &s. The data consists of deterministic nei hborhoc?ds We aive a brief overviewycé th
packets, and the number of packets is denoteffals= N, laorithm h 9 d di h gd . K f
We define thanformation qualityof the data ad(Y,), which algorithm here and direct the reader to our prior work for
corresponds to the expected value of information (e.garinf addmonal_ detail [6]. I : dim

mation gain in an inference problem [8], or variance redurcti We. define aprobabilistic nmg_hborhood_;’n CR as all

in a regression problem [9]). In the general case, coupli cationsz, where the probability of successful data transfer

between the sensor measurements can lead to informatio vy Tn) i grt(.aat?kr]tham.bﬂt\;_el.v?lue qtvheb (Or,]l)gt_atermmles
being subadditive or superadditive. In the context of da pw conservafive e probablistic NeIghbornood s '

collection, we will assume that information is additivee(] it will be near certain that information will be received o
1(Y,.Y)) _ I(Y;) + I(Y;) for all i # j). Extensions t(.) sensorn if the AUV is within the neighborhood. Ag — 0,

subadditive information is a subject of ongoing work. the AUV may need {0 query a sensor multiple times before
efeiving data from it. In Section V, we run experiments to

The sensors are assumed to have limited capabilities. Eéd ) h | h ) he inf .
sensor is capable of transmitting packets of data over gtermine the value op that maximizes the information to

. . . , e ost ratio.
noisy channel. A single mobile vehicle has the capability {© o ) '
communicate with the sensors. The locatigne R%™ of the Once the probabilistic neighborhoods are defined, we can

vehicle is controlled and may be subject to constraintsh sugenerate a covering _set of pe|ghborhoods by.gr.eedlly chgos!
as obstacles or vehicle kinematics. Based on these cantstrai>c">0"S and removing adjacent sensors within the r_e§l_JIt|ng
a traversal coste(xy,z2) is defined for all pairs of points nelghbprhood. A Va!'d tour can _then be found by V'S't'ng
2.7 € RU™ We assume that the traversal cost obe;}%e neighborhoods in the covering set [10]. The resulting

the triangle inequality and that the location of the AUV i gorithm re_quiresaTSP solver for calculat.ing a neighboth
known. Example traversal costs include Euclidean distanf!r- We utilize the Concorde solver for this task [5].

and time to arrival. Theommunication qualityf a location This path plannipg algorithm was s_hown i_n prior Work
degrades with distance(z,,z,) = f(D(&v,an)), Where to outperform existing methods, including a simple reactiv

D(&y,20) = |an — 2., and f decreases monotonically with Strategy and a standard TSP solution [6]. These prior esult
distance did not consider multiple access communication. In thegures

The optimization problem is to plan a pat® — Paper, we allow the vehicle to execute a multiple access
20 (1), 70 (2) 2,(T)] for the vehicle that retrieves dataProtocol to all nodes in the neighborhood once it reaches the
v I v AR v

from the sensors and minimizes the traversal cost of the patfnter of the neighborhood. We assume that no communication
In prior work, we assumed that the AUV communicates with @ccurs while the vehicle is moving between neighborhoods,
single sensor at a given time, which allow for simple method4ich allows the neighborhoods to remain static during the
to calculate the expected informatidt(P) along a path [6]. information exchange. Relaxing this assumption is an aenu
Relaxing this assumption requires the development of mdf¥ future work.

sophisticated techniques to calculate the informatiorityust

a given AUV location (see Section 1V). Given an expression IV. AcousTiC COMMUNICATION

for R(P), we can write the Communication-Constrained Data acqystic propagation is characterized by energy spreading
Collection Problem (CC-DCP) formally. . and absorption that occur in an unobstructed medium over a
_ Problem 1: Given path costs, expected information qual- gingle propagation path, as well as by additional distogio
ity R, and a set of possible AUV path, find caused by multipath propagation (i.e., surface-bottonecefl
T tions and refraction due to sound speed variation with depth
P* =argmin y c(P(t—1),P(t)) st R(P) > B, (1) [11]). Ray tracing offers an accurate picture of the reaglti
PEY =2 sound field at a given frequency and a given location in a
where T is the index of the last location on the path, ang¢iozen ocean, and tools such as the Bellhop code [12] are
B is a threshold on information quality. The value @fcan typically used to predict the signal strength prior to syste
be tuned depending on the desired weighting of informatiefeployment. However, the actual signal strength, observad
quality and cost. Higher information quality thresholddlwi finite bandwidth and over finite intervals of time during winic
require additional cost (communication cost and/or trsaer the transmitter/receiver become slightly displaced adcatweir
cost). nominal locations or the surface conditions change, desiat



from the so-obtained value. These variations appear asnand .
and our goal is to describe them statistically. z

© 9
——9,7k,10log d

A. Data from AUV Deployment i
We utilize data acquired by the AUVucille. Lucille, a
SeaBED-class AUV [13] operated by the NOAA Northwest
Fisheries Science Center, is equipped with a WHOI Micro-
Modem and 12.5 kHz ITC-3013 hemispherical transducer
for acoustic communications [14]. In September of 2010,
Lucille assisted in mapping the submerged portion of the 10t
San Andreas Fault off Northern California, at approximatel

N
o
T

gain [dB]

=
1
T

39°50'N, 124°W. During this survey, the AUV’s onboard LT L

networking stack, capable of handling data fragmentatiah a f00 200 300 400 560 600 700 800 900 1000
image compression [15], transmitted one three-secondepack distance [m]
every five SGCOI’]QS. These packets_ Were_enCOded using qgéhl Gain (normalized) vs. transmission distance. Dbasmeasured
Frequency-Hopping Frequency Shift Keying (FH-FSK) anghiues; solid curve shows an estimated trend (a first-omtgarithmic-scale
Phase Shift Keying (PSK), and transmitted using 4-5 kHwlynomial fit to the ensemble mean at each distance yieldd..9).
bandwidth around a center frequency of 10 kHz.

Throughout the course of the dive, the vehicle maintained ) o
a constant altitude above the seafloor of 3 m, at a depth (} the random component obeys a Gaussian distribugon,
approximately 130 m. The surface ship, the R/V Pacific Storrﬁ{(o_v ?). _
varied in slant range from 200 m to 1 km from the vehicle. The Figure 1 summarizes the recorded values (from the deploy-
surface ship remained underway with the hydraulics runnirﬁ%e”t described above) of the gain as a function of distance.
during this experiment, resulting in significant noise Igein! Ne solid curve represents the log-distance model (3), @hos
generated across all frequencies, including those used R§rametergo andk, were obtained by first-order polynomial
communication. These conditions are typically experiertoe fitting.3 We emphasize again that the model parameters will

AUVs operating from near-shore vessels on the continentdigeneral depend on the operational conditions, i.e. tmat t
shelf. values indicated in the figure are representative of the 8-12

kHz acoustic band and transmission distances on the order of
) several hundreds of meters.
B. Acoustic Channel Model Shown in Figure 2 is the histogram of the random compo-
To specify a propagation model, we represent the gain asenty = g—g. This figure motivates our second conjecture, i.e.
_ the Gaussian model far. The variancer? is calculated from
g(d,t) =g(d) +y(t), (@) the data at hand. We note that its value appears to be invarian

where g(d) is the mean value of the gain at a distanctr the range of distances considered, although greaterdis

d? and y(t) is a random process. In this model, the gaifiPans could require sectioning. We also note that the waian
g(d) represents the expected communication quality.,, z,,) will depend on the bandwidth, decreasing as the bandwidth
whend = D(z,,z,) (see Section Il). We do not considerincreases. Similar conclusions have been found usingrelifte
changes in water pressure with depth, which would affect tata sets [16].

propagation speed. Such changes could be accounted for in

the signal processing layer by inserting guard time slots ¢ packet Error Modeling

account for slight variation in propagation speed. o . _
We now proceed to establish two models based on o rWe utilize an underwater acoustic noise model developed
P A prior work [2], [11]. This model accounts for noise factor

T e st ol e eTvIONTEN, sUch 2 wnd and sppng acty. o
. ! P P y ai well as thermal noise and turbulence. We also assume a block
tion function (pdf) of the random componept We utilize

h | del similar t : K 13] that idenifi log-normal fading model for the received signal-to-noiagar
la Cdf'”t‘”e mode 5|:n|arv\;) pr||or V\(Ij(z:;’ [ ]ddi' ! eln : Ied SNR) based on section IV-B. Le®s be the probability of
0g-distance parameters. Ve aiso add an additional randQifl,, ., error averaged over the SNRs. For a packet with
component, and we specify the overall power loss, includi

all frequencies and all propagation paths. These modelgwil e rr?rticr);?eeirslcgiegg Ev;/th a code of ratethe average packet-
valid for the chosen operating conditions (frequency bamti a

transmission distances). Specifically, we make the folgwi Pp=1-(1-P5)%. (4)
conjectures:

(i) the mean value obeys a log-distance model There is no known simple approximation & when SNR is

log-normally distributed, and we employ Monte-Carlo meth-
9(d) = go — ko - 10logd (3) ods to perform simulations. In this model, the packet succes

°The distance is varying with time, i.e.= d(t). 3Logarithms are taken with base 10.



‘ ‘ executed in the data transfer phase would also be upper
I cxperiment bounded.

Gaussian |/

0.16

0.14

E. Protocol Analysis

We make a few simplifying assumptions in order to compute
the communication throughput. In particular, we let fading
be independent across all distinct sensor to AUV links as
well as across retransmissions over the same link. Spatial
independence of fading is only assumed as a first approxima-
tion, and addressing correlated fading is an avenue fordutu
work. We assume that all sensors are equally informative,
and thus each sensor transmits one unit of information in a
B P s 0 5 0 15 single packet. While the transmissions from the sensoriseto t

y [dB] AUV will incur errors, we assume that transmissions from the

AUV to the sensors are perfectly decoded. Information acros
Fig. 2. Histogram of the measured deviatigrand the theoretical p.d.f. of gensors is assumed to be independent. The case of correlated

a zero-mean Gaussian random variable wit¥6.7 dB. . . . . .
information is a subject of ongoing work.

In a given neighborhood we assume a totalMéfsensors,

rate of 1 — Pp between a vehicle at, and a sensor at,, where M < N total sensors. Letl; denote the location
represents the expected communication quality,, z,,) (see of sensori and |L;| denote its distance from the AUV. Let

0.12}
0.1}

S 0.08F
0.06}
0.04t

0.021

Section II). {s(1),...,s(M;)} be the set ofi/ functional sensors selected
in step 1 of the protocol. We assume that the sensors are
D. Scheduling Protocol indexed to satisfyL;| < |L;| and|Ly;)| < |L,;| whenever

We assume a set of sensor nodes with fixed locatiohs: /- L€t Ba and Bp rea%ectively denote the sizes of ACK

and that synchronization amongst the nodes has been accBffl DATA packets andi; ™" and By quantify scheduling
plished. Synchronization among sensors is a hard problemPfCket sizes ford/ and M, sensors respectively. Let/,
general, but is relatively easy if the locations are fixed afifnote the number of distinct scheduling slots requireaier
known. Thus, we do not address synchronization protod§und of ACK transmission in step 1. Lélp(y) denote the
specific issues in this paper. We further assume a singgPPability of data packet error given an instantaneous SNR
carrier, half-duplex communication system. We descridevbe Of v, andPp be the packet-error-rate averaged oyeLet Ny

a three phase multiple access control protocol based on-Tirff§NOte the total number of data packets per sensor.
Division-Multiple-Access with Acknowledgement (TDMA- We next compute the expected information transferred and
ACK): the expected cost of communication (in seconds) for a maxi-

1) Initiation: The sensors begin in a sleep state. The aufum Of K transmission roun_ds. If a packet fails, a retransmis-
sion occurs. Thus a packet is not transferred only if it fails

sends a high power broadcast wake-packet which brin rounds of communication. We define thidormation gain

the sensors into an active state and contains initifal . . )
o rom sensors(i) after K rounds of transmission as:
communication schedules for all sensors.

2) Scheduling:The functional sensors, which received the I(;) = # of packets x prob. of success
broadcast correctly, reply with an acknowledgement K
according to the schedule. The AUV selects a subset =N, - (1 - H Pp (7?(?))) , (5)
of the functional sensors and sends out the next round k=1

of scheduling information to this subset. (%) : _
3) Data Transfer:The sensors reply with data packets. Afyvhgre Vs (i) denotes the mstan-taneous- SNR.fo.r sens(oy
yring thek*™™ round. The total information gain is then:

ter all sensors have completed their transmissions, if afl

packet fails, the AUV re-schedules the corresponding M,
sensors with an Automated-Repeat-Request (ARQ) for I= st(i)
the failed packets. i=1
The number of sensors in a neighborhood has an upper M. K (k)
bound, which is assumed to be known at the AUV for the =Np- | Ms — Z H Pp (75(1')) 6)
=1 k=1

initiation phase. Replies to the broadcast wake-packet are
assumed to include a sensor identification header for furti@iven the set{s(i)} of selected sensors, & = {wiki))} be
rounds of scheduling as demanded by the protocol. The acttk@ set of all random SNRs in (6). By our independent fading
broadcast wake sequence and corresponding reply sequeassamptions, the expectation, with respecftoof the total
can be customized in order to provide an estimate of th&formation gain is computed as:
average quality for each sensor to AUV link. Such informatio M.,
helps the AUV perform sensor selection in the scheduling _ ) _ s(2)
phase. As part of the implementation, the number of ARQs Erlll =N, lMS ;PD

K

()




For a data collection patiP that visits a number of to determine which packets are successfully received by the
neighborhoods, we can sum the information ghiacross the AUV.
entire path to calculate a value for the expected informatio Simulations were run with varying values of the parameter
quality R(P) (see Section Il). The expected informatiorp, which represents the size of the probabilistic neighbodso
quality provides a metric for evaluating that path. (see Section Ill). The number of automated repeat requests
Next we calculate the cost of communication. The initiatiopARQs) was also varied. These two parameters represent
phase has a broadcast of siBgM). This must reach the design decisions when implementing the contour-based TSP
farthest sensor, so round-trip propagation dela§4is2-|Lys| algorithm. For link quality simulation, each link is assegh
and the transmission cost S, - B(SM). In the scheduling a distance dependent loss as well as a random log-normally
phase, the reception time for all ACK packet<ls- B,-M, distributed loss. Each random loss is selected indepelydent
and each subsequent scheduling broadcast takesB.) and the average packet error rate (APER) is numerically
transmission time and the worst case round-trip propagatiealculated. The APER is used directly to calculate infofarat
time of Cy -2+ [Ly(as,)|. After thek'™ round, the number of data gain and communication cost.
packets left to transmit at senseifi) is N, - Hle PD(’Yil(i))’ Figure 3 shows the results of the_se S|mul_at|0ns. We note
which determines the duration of the next scheduling sfot. that, since the sensors are equally informative and redeive
Tmas IS the maximum delay spread, we need a guard intery@formation is additive, information gain is equivalent ttee
of 2 M, - Tas fOr €ach transmission round agd M - 7,,,,, number of distinct packets received. The AUV speed was used
for the initiation phase. Summing over all transmissionnas {0 calculate a traversal time between points in the 2D space,
across all sensors, we have the communication cost as: Which was used as the traversal cost. The total cost of the
mission is the sum of the traversal time and the communieatio
¢ = Initiation Cost + K - Scheduling Cost time. As expected, both information gain and communication
+ Guard Interval 4+ Data Transfer Cost cost increase as the number of ARQs is increased. In addition
M increases in contour probability (corresponding to desmda
=2:Ci-|Lu|+Co B + Gy Ba - My neighborhood size) Iepad to Io)rgg(er patﬁs for 9t]he AUV and
+K- (2 -C1 - |Lg(ary| + Co - B(S]”S)) increased cost.
More interesting observations arise when we examine the
+2- M Timag +2- K- M - Tinag gain to cost ratio in Figure 3. We see that the gain to cost
Kt Y.k ) ratio first increases with increasing ARQs and then decsease
+C2Bp - Np- Z ZHPD('YS@))' (8) Additionally, the gain to cost ratio maximum appears at a
=0 =1 =1 different ARQ value for varying probabilistic neighbortbo
From the independent fading assumptions and (8), the expsige. The highest gain to cost ratio occurs with= 0.7 and
tation, with respect td", of the total cost of communication 4 RQ = 6, which provides optimized performance for the path

becomes: planning algorithm. Additionally, if we look at the gain&to
PR _ p(M) _ . frontier, we see that we can tune the solution based on difter
Erlt]=2-Ci-[Lu|+Co- By + Co - Ba - Ma weightings of cost and gain. By varying the valuepcdnd the
+ K- (2 -C1 - |Lgary| + C2 - B(SM"‘)) ARQs, we have built up a frontier of solutions that tradeoff

between mission time and information gain. These simuiatio

+2- M- Tmag +2- K- M - Tnaa provide an empirical method for selecting the valuepdhat

M. [1_ pB(i)K maximizes the information to cost ratio.
+CQ'BD-NP'Z ——— (9)
i—1 \ 1— PB(Z)

VI. CONCLUSIONS ANDFUTURE WORK

When evaluating the total cost of a data collection tour, __, . . I
the cost of communication is added to the traversal cost .toTh'S paper has demonstrated the benefit of utilizing schedul

calculate a total mission time. ing protocols to design path plar_ming algorithms for au-
tonomous underwater data collection. We have shown that
simulated analysis with varying parameters can be used to
V. SIMULATIONS build up a frontier of solutions that tradeoff between missi

A simulation environment was implemented in C++ runnintime and information gain. Without such analysis, it would
on Ubuntu Linux to test our proposed CC-DCP algorithmgot be possible to generate this frontier of solutions, dred t
The simulated experiments were run on a 3.2 GHz Intel frath planning algorithm would need to execute blindly. Thus
processor with 9 GB of RAM. We examine the performance @fproved scheduling protocols and analysis of commuroocati
the proposed scheduling protocol integrated with the aonto provide powerful tools for optimizing path planning algbrins
based TSP path planning algorithm. One-hundred random ftDdata collection scenarios.
deployments of 100 sensors were generated in a 2D kKin A number of interesting extensions provide avenues for
km area, and a simulated AUV was added to the environméuture research. This paper assumes that communicaticn doe
that moves at a speed of 1 m/s. The AUV executes a plan foumat occur while the vehicle is moving between neighborhoods
using the path planning algorithm described in Section llincorporating this functionality would require more corpl
The packet error modeling described in Section IV was usetbdeling of the (time-varying) information gain. In additi
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Simulations of an AUV collecting data from an undeievasensor network. Averages are over 100 random deplogmerd 1 kmx 1 km area

with 100 nodes. The AUV executes a data collection tour fousidg a TSP with neighborhoods. The simulations are peddrmith varying neighborhood
size and number of ARQs.

we are in the process of deriving equations to calculaterinfo[5] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Codie Traveling
mation gain when correlations exist between sensors, which Sg(')%sma” Problem: A Computational StudyPrinceton Univ. Press,
causes the the value of information to become subadditive. g, '

ACKNOWLEDGMENT

(7]

The authors gratefully acknowledge Jonathan Binney,

Arvind Pereira, Hordur Heidarsson, and Srinivas Yerramall(®

at the University of Southern California for their insighitf
comments. Thanks also to Chris Goldfinger of Oregon Stat@] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg, “Neptimal
University, the captain and crew of the R/V Pacific Storm, and
Elizabeth Clarke of the NOAA Northwest Fisheries Science
Center for their support of this work.

(1]

(2]

(3]

(4]

REFERENCES

R. N. Smith, Y. Chao, P. P. Li, D. A. Caron, B. H. Jones, andS5
Sukhatme, “Planning and implementing trajectories fooaamous un-
derwater vehicles to track evolving ocean processes baspcedictions
from a regional ocean modeljit. J. Robotics Researchol. 29, no. 12,
pp. 1475-1497, 2010.

G. Hollinger, S. Yerramalli, S. Singh, U. Mitra, and G. Sukhatme,
“Distributed coordination and data fusion for underwatearsh,” in
Proc. IEEE Conf. Robotics and Automatjd2011, pp. 349-355.

M. Stojanovic, “On the relationship between capacityd atistance in
an underwater acoustic communication chann&iCM SIGMOBILE

Mobile Computing and Communications Reyiewl. 11, no. 4, pp. 34—

43, 2007.

I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. CorkBata

collection, storage, and retrieval with an underwater senstwork,” in

Proc. Int. Conf. Embedded Networked Sensor Syst@6@5, pp. 154—
165.

[10]

[11]
[12]

(23]

[14]

[15]

[16]

G. Hollinger, U. Mitra, and G. Sukhatme, “Mobile undenern data
collection using acoustic communication,” Broc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systen2011.

D. Bhadauria and V. Isler, “Data gathering tours for mehiobots,” in

IEEE Int. Conf. Intelligent Robots and Systerf809, pp. 3868-3873.

] A. Krause and C. Guestrin, “Near-optimal nonmyopic eabf informa-

tion in graphical models,” ifProc. Uncertainty in Atrtificial Intelligence
2005.

sensor placements: Maximizing information while minimgicommu-
nication cost,” inProc. Information Processing in Sensor Networks
2006, pp. 2-10.

A. Dumitrescu and J. Mitchell, “Approximation algdmins for TSP with
neighborhoods in the plane]. Algorithms vol. 48, no. 1, pp. 135-159,
2003.

L. Berkhovskikh and Y. Lysanovi-undamentals of Ocean Acoustics
Springer, 1982.

M.Porter, “Bellhop code,” available online at httpalib.hlsresearch.
com/Rays/index.html.

H. Singh, A. Can, R. Eustice, S. Lerner, N. McPhee, O.aRg
and C. Roman, “Seabed AUV offers new platform for high-resoh
imaging,” EOS Trans. AGUvol. 85, no. 31, 2004.

L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and Ball,
“The WHOI micro-modem: An acoustic communcations and navog
system for multiple platforms,” ifProc. IEEE Oceans Conf2005, pp.
1086-1092.

C. Murphy and H. Singh, “Wavelet compression with settipaning
for low bandwidth telemetry from AUVs,” irProc. ACM Int. Wkshp.
UnderWater Networks2010.

P. Qarabagi and M. Stojanovic, “Adaptive power confiaml underwater
acoustic channels,” ifProc. IEEE Oceans Conpf2011.



