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Abstract— Autonomous Underwater Vehicles (AUVs) often
communicate with scientists on the surface over an unreliable
acoustic channel. The challenges of operating in deep waters,
over long distances, and with surface ship noise amount to a
communication channel with a very low effective bandwidth. This
restriction makes transmission of images, even highly compressed
images, quite difficult. We present an image compression algo-
rithm designed to convey the gist of an image to surface operators
in a very small number of bytes. Our technique divides a large
existing database of underwater images into ‘tiles’, and uses these
to reconstruct an approximation to new underwater images from
a similar domain. We achieve significantly higher compression
ratios than conventional image compression techniques, such as
JPEG or SPIHT, while still being able to provide useful visual
feedback to the surface.

I. INTRODUCTION

For those who study the seafloor, underwater robots provide
a crucial pair of eyes in an otherwise forbidding environment.
Robots allowing scientists from all disciplines to capture
images in environments as diverse as lively Puerto Rican
coral reefs, historically valuable shipwrecks, or the barren
volcanic seafloor beneath Arctic ice caps. Tethered underwater
robots operate near a surface ship and can transmit data to
waiting scientists on the surface while receiving power and
commands in return. Remotely Operated Vehicles (ROVs)
range from shallow-water commercial models to deep-sea
research vehicles like the JASON II [1], [2], and enable human
operators to explore the depths almost as if they were there. As
live imagery is received on video monitors, scientists can begin
to form hypotheses from new observations, develop plans for
upcoming dives, and even alter the plan for what remains of
the current dive.

This contrasts strongly with typical Autonomous Under-
water Vehicle (AUV) missions, where the lack of a physical
tether can cut data throughput by seven orders of magnitude
or more. A tethered vehicle communicating with single-mode
fiber optics can easily support gigabits of data per second,
yet autonomous vehicles typically communicate over acoustic
links at speeds of tens or hundreds of bits per second. The
lack of a tether, however, allows AUVs to reach areas that
are inaccessible to ROVs, such as under Arctic ice sheets [3].
The lack of information on the surface means that AUVs are
typically preprogrammed as a set of waypoints, leaving few
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Fig. 1. A comparison of our method used to compress a 432x336 image of
a ray, versus standard JPEG compression and the SPIHT wavelet coder.

mission planning decisions to be made while underwater.
We seek a way to involve surface scientists in the high-level

decision-making processes for AUVs. Providing the operator
with contextual data, beyond the basic location and health
information currently translated, is essential to this goal. AUVs
designed and optimized for seafloor photographic mapping can
easily capture high dynamic range images every 3-5 seconds.
Transmitting each of these images at full resolution to the
surface over an acoustic link is not currently practical, but we,
and others, have had success transmitting highly compressed
versions of individual images. Automatically identifying which
images should be sent up poses a difficult and task-specific
computer vision challenge.

This paper presents a method for encoding “high-resolution
thumbnails” of seafloor imagery, designed to give the operator
a rough idea of the contents of each transmitted image.
This method provides extremely high compression of seafloor
imagery which, unlike traditional image compression meth-
ods, exploits the high levels of inter-dive redundancy. The
method is inspired by the vector quantization literature, but
differentiates itself from past work by using large quantization
vectors, or ‘tiles’, much like an image mosaic. Compression



artifacts are reduced during decoding, resulting in a caricature
of the original image. While a naı̈ve implementation requires
a time-consuming and computationally difficult search, several
modifications to increase suitability for subsea operation are
proposed. Results are shown for images captured during two
AUV dives in the Channel Islands National Marine Sanctuary.
The first dive took place over the submerged wreck of a World
War II aircraft shown in Figure 2, and the second over nearby
rocky fish habitat as shown in Figure 3.

Fig. 2. The submerged wreck of an Avenger torpedo bomber, lost in the
Channel Islands National Marine Sanctuary and Park. Images courtesy NOAA
Northwest Fisheries Science Center, mosaic by Chris Murphy, Clay Kunz and
Hanumant Singh.

II. RELATED WORK

A. Underwater Communications

the ocean environment presents numerous challenges to
acoustic communication, including low available bandwidth
and large propagation delays [4]. These challenges are made
worse by operating over long distances [5] and by envi-
ronmental conditions such as seafloor makeup and water
depth. AUV and surface ship noise transmit directly into the
channel, further exacerbating the problem. As a result, use
of long-range underwater communication is characterized by
extremely low effective bandwidth, high latency, and frequent
packet loss.

To accomodate the peculiarities of the medium, channel
coding methods with high rates of error-correction are typ-
ically employed. While underwater acoustic communications
has achieved rates up to hundreds of kilobits per second [6],
reliable acoustic communications over long distances currently
requires the use of low-rate communications with high error
tolerance, such as frequency-hopping frequency shift keying

Fig. 3. Example images captured during an AUV dive in (generally) rocky
habitat.

(FH-FSK) or highly error-corrected phase shift keying (PSK).
In addition, AUVs may rely on acoustic navigation schemes
such as LBL [7] or USBL. Since the ocean is a shared broad-
cast medium, time-multiplexing of the channel for navigation
or communication with other vehicles may be required, which
lowers effective bit-rates further. The WHOI Micro-Modem,
used by Seabed-class AUVs, uses low frequency bandwidth
to allow for multiple senders and receivers. It is capable of
sending one 256-bit FH-FSK packet in slightly over 3 seconds,
or one 1536-bit error-tolerant PSK packet in slightly over
6 seconds, delivering an effective bit-rate between 80 and
256 bits per second. Commercially available options from
Teledyne-Benthos and LinkQuest advertise 80-360 bits per
second for environments with harsh multi-path. Advances in
coding theory bring increased bitrates, but there is always
a tradeoff between enhanced reliability and higher bitrates.
Summarizing data for transmission at ultra low bit-rates,
especially when time-multiplexed with acoustic navigation
methods, presents a significant hurdle. As a result, current
telemetry is often quite limited.

B. Acoustic Telemetry

During many AUV deployments, a surface operator mon-
itors simple vehicle telemetry to track the AUV and watch
for anomalies. Perhaps the most widely used standard for this
telemetry is the Compact Control Language (CCL) [8], which
defines a number of standardized methods for encoding vehicle
state and health, as well as samples of bathymetry, salinity,
and other data [9]. In addition, several 256-bit packets for
AUV to AUV, and AUV to surface-ship, communications are
specified. While CCL is adequate for transmitting individual
datapoints from an AUV, or for transmitting basic commands
to an AUV, it is not particularly efficient. CCL relies only
upon quantization to provide compression and makes no use
of the inherent correlation between successive samples from
most instruments.

There has been extensive experimentation with the transmis-
sion of still and video imagery over relatively high bandwidth
(1-10kbps) acoustic tethers. In 1992, researchers from NEC



presented a system for transmitting low-resolution compressed
images from the Shinkai 6500 submersible [10]. Researchers at
WHOI have developed high speed prototype acoustic tethers
capable of transmitting video [11]. In addition, Hoag, Ingle
et al. have extensively studied the application of wavelet
compression techniques to underwater images [12] and video
sequences [13]. Craig Sayers, and others at the University
of Pennsylvania, developed techniques for selecting specific
frames and ‘regions of interest’ from a video sequence that
best describe an ROV manipulator and environment state, and
transmitted these regions to surface operators over a 10000
bit per second acoustic tether as JPEG images [14]. These
techniques don’t generalize well to the ultra-low bandwidth
situations we are confronted with, though we compare our
technique to both JPEG and wavelet compression.

III. METHOD

Our approach decomposes each image into a grid of tiles,
and encodes each tile as the index of a visually or semantically
similar, but previously captured, image tile. We are inspired
by the widely used JPEG standard, which encodes images
as a grid of 8x8 patches. During JPEG encoding, each 8x8
patch is converted into a frequency domain representation by
projecting it onto a series of cosine basis functions, using the
Discrete Cosine Transform (DCT). The resulting coefficients
are quantized and compressed using run length and Huffman
encoding. While our technique is also a patch-based approach,
our patches are larger and instead of quantizing the coeffi-
cients, we use the coefficients to look up the most similar
entry in a database of tiles taken from other related images –
a form of vector quantization.

Vector quantization represents an arbitrary point in high-
dimensional space by the index of the nearest point in a
preselected set, or library, of basis points. Widely used in
audio compression and early video compression standards,
vector quantization has been applied to image compression
by decomposing an image into small (e.g. 4x4) vectors, and
encoding using vectors from a previously selected basis set.
Our approach uses tiles (or vectors) much larger in size – up to
40 pixels square. Our library of precaptured tiles is generated
from previous dives in nearby or similar areas, and may
contain tens or hundreds of thousands of tiles. Large image
databases have been used extensively in computer vision for
applications such as object recognition [15], semantic image
completion [16], and image geolocation [17]. Torralba and
colleagues have also explored ways of accelerating nearest
neighbor image searching in a large database [18]. To the best
of our knowledge, such an approach has been used to construct
“photomosaic” puzzles and to similar ends, but not for image
compression in this manner.

The tile library is shared between the AUV and the receiver
prior to the dive. Tile similarity can be calculated using a
variety of methods; we found L2 distance to be effective,
though computationally challenging for an embedded system.
We therefore use Principle Components Analysis (PCA) to
accelerate tile comparisons, and identify the best match for

each source tile. Tile indices are transmitted to the surface,
where indexes are transformed back into tiles, and a caricature,
or ‘high-resolution thumbnail’, of the original image is gener-
ated. We present two distinct methods, based upon gradient-
preserving blur Poisson editing techniques and image quilting,
for reducing compression artifacts in these reconstructed im-
ages.

A. Tile Database

The first step of our technique is therefore to construct a
database of tiles which describe the space of images we intend
to encode. On N images of consistent dimension wi × hi,
we impose a grid with square dimension wt × ht. Computing
a tile database given an image set amounts to sampling sub
images along a uniform grid. The image set is ideally of
the same type of scene (e.g. coral reefs) as the images to
be compressed. For many applications, such a training set is
readily available. For instance, on an expedition consisting of
several dives, an image sequence captured on a dive on the first
day can be used to build a database used on subsequent days.
In practice, we construct sample databases upwards of 100,000
tiles, depending on tile and image dimensions. The final size
of a single compressed image is governed by Equation 1.
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⌋
×
⌊
hi

ht
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In addition to a large database of tiles, we require a notion
of similarity or distance between tiles. This metric is used
to determine the nearest neighbors to a query tile. We are
interested in metrics that can capture the gist of a tile while
being fast to evaluate. Ideally, we would like to use the L2

distance metric across all of the pixels in an image so that
the nearest neighbor selected minimizes the root mean square
(RMS) reconstruction error. However, the L2 distance is too
expensive to use due to the high dimensionality of the tiles, and
the large library size. Instead we approximate the L2 distance
using PCA by projecting each tile into a low-dimensional
space, allowing encoding on commodity hardware on board
an AUV. We could use any metric that captures the gist of a
tile while being relatively fast to evaluate. A SIFT descriptor
[19] or other feature-based approach would be effective, and
could result in visually different but still semantically correct
tile matches.

We use Principal Components Analysis (PCA) to accelerate
the evaluation of the L2 distance. Specifically, we use PCA
to optimally compress (in the L2 sense) our set of high
dimensional image tiles into low dimensional feature vectors.
We proceed as follows:

First we flatten each RGB color image tile x with dimension
n×m into 3nm× 1 vectors. We pack these vectors side-by-
side into a matrix X of size 3nm × N where N is the size
of our training set. We mean center this matrix by subtracting



the mean column from each column.

Xm(i, j) = X(i, j)− X̄j

We then use the Nonlinear Iterative Partial Leaset Squares
(NIPALS) algorithm to compute a basis P = [p1, p2, . . . , pk]
such that,

Xm = PT + E

where T ∈ Rk×N is a matrix containing the low-dimensional
feature vector representation of our training set and E is the
residual.

A new tile query y can be projected on to the principal
components P to generate a compressed representation t(y) =
PT y comparable with the low-dimensional representation of
the training set. The result is that the L2 distance metric can
be efficiently evaluated by comparing only a few components
of low-dimensional vectors instead of taking the pixel-wise
difference of two image tiles:

d(x1, x2) = ‖x1 − x2‖2
≈‖Pt(x1)− Pt(x2)‖2
= ‖P‖ ‖t(x1)− t(x2)‖2
= ‖t(x1)− t(x2)‖2

As the number of components approaches the dimensional-
ity of the data set, the PCA distance metric is guaranteed to
converge to the L2 distance metric. The results of approximat-
ing a sample tile with increasing numbers of PCA components
are shown in Figure 4. Finally, the nearest image tile indices
are packed bitwise, and transmitted over the acoustic link.
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Fig. 4. Shown above is a visual depiction of the reconstruction fidelity of a
sample tile as we increase the number of PCA components.

B. Block Artifact Reduction

Due to the tile-based nature of our compression algorithm
and the constraints of extremely low bit rates, the images have
noticable “block artifacts” along the grid structure. We can
ameliorate this issue with post-processing. We explored two
techniques: a gradient-preserving blur and an image quilting
technique. These post processing techniques are performed by
the receiver, typically a surface ship where computation power
is less restricted, after an image has been received. While
both techniques reduced the blocking artifacts, we relied upon
the gradient preserving blur as the results were more visually
appealing and only minimally affected the texture detail.

Fig. 5. Our gradient-preserving blur technique reduces the block artifacts
over the indicated grid.

1) Gradient-Preserving Blur: One approach to reducing the
block artifacts is to blur the image along the grid. However,
this produces an equally disturbing artifact where the pixels
along the grid are noticably too smooth. Ideally, we would
like to smooth the less noticable low-frequency content while
preserving sharp boundaries. We achieve this technique by
applying a blur that preserves image gradients. We follow the
Poisson image editing technique as described by Perez and
colleagues [20].

Poisson image editing interpolates a region of an image f ∈
Ω constrained at the boundary ∂Ω with Direchlet boundary
conditions f∗. The interpolated region is made to follow a
vector guidance field v which in our case are composed of
the image gradients of each tile (see Figure 6).

min
f

∫∫
Ω

‖5f − v‖2 with f |∂Ω= f∗|∂Ω

We discretize the above equation along the pixel grid. Let
fp be the value at pixel p and 〈p, q〉 be the set of neighboring
pixel pairs.

min
f |Ω

∑
〈p,q〉∩Ω6=∅

(fp − fq − vpq)
2 with fp = f∗p , for all p ∈ ∂Ω

For all 〈p, q〉, we set

vpq =

{
fp − fq if tile(p) = tile(q),

0 otherwise.



Fig. 6. To reduce block artifacts without oversmoothing, the gradients v of
each tile are preserved while blurring the region between tiles Ω. We constrain
the blur to respect the boundary ∂Ω.

That is, we respect all image gradients as best we can except
those between two pixels of from different tiles. The mini-
mization above is given as the solution to a system of sparse
linear equation. We solve these equation separately for each
color channel using direct LU factorization. The results are
shown in Figure 5. Our implementation takes several seconds
per image to compute on a modern laptop processor.

2) Image Quilting: The results of our compression are
reminiscent of texture synthesis literature. We are, in some
ways, attempting to identify and resynthesize different sub-
strate textures based upon our previously captured tiles. Thus
inspired, we tested Efros and Freeman’s image quilting [21]
method as a way of reducing the blocking artifacts. In [21],
the match fidelity between neighboring tiles is improved by
constraining neighbors to agree with each other within some
error tolerance. While such an approach could be incorporated
into our technique, we currently have no such constraint.
Image tiles are presently selected solely on the quality of
their match to the image being compressed. The results of
performing this method on a single image are shown in Figure
7. The white lines in the top image indicate the location of
the minimum-error cut.

IV. RESULTS

As shown in Figure 1, standard JPEG compression does not
perform well at very low bitrates. The JPEG standard highly
quantizes color information, meaning that at low bitrates color
information is almost entirely gone, or badly distorted. High-
resolution details are also entirely lost, leaving large blotches
of different brightnesses, with few discernable features. The
severe losses in coding quality observed in JPEG images
when compressed to more than 0.15–0.20 bits per pixel (40:1)
are well documented [12]. More modern image compression
methods of course exist, including wavelet-based methods
such as SPIHT, but all trade off texture information at high
compression rates. We hoped to preserve texture information
in our resulting thumbnails, while still being able to discern
objects of interest.

We demonstrate our method over a set of images collected
by a SeaBED AUV [22] during dives near Channel Islands
National Park, off the California coast. The first dive was
performed over the wreck of a World War II era fighter
plane, shown in Figure 2. 150 randomly selected images from

Fig. 7. Blocking artifact reduction with the minimum error boundary cut. At
top, the minimum error boundaries are highlighted; when adjacent tiles are
mated along these cuts, the bottom image is the result.

this dive were used to calculate PCA features as described
previously. Images from the dive were then converted to tiles,
and each tile was projected onto the generated PCA basis. The
top PCA features that were generated are shown in Figure 8.

The results were saved as the tile library, shared by both
the encoder and decoder. The second dive was over nearby
rocky habitat, with the goal of studying fishery health. A
selection of interesting images (ie - not purely sand) were
hand picked from those captured during the dive. Each image
was encoded, by projecting tiles onto the PCA basis and
matching to those tiles acquired in the first dive. The results
of encoding using this method are shown in Figure 9. As the
source image resolution (448x336) was not an integer multiple
of all tile sizes, the bottom and right edges were trimmed in
some images.

The results of our trials are difficult to quantify, as appropri-
ate metrics are largely application dependent. Still, as a method
for obtaining an arbitrarily small representation of an image, it
holds promise. To begin to quantify the encoding efficiency, we
calculated the average per-pixel RMS error for twelve images
encoded with a variety of tile sizes, and tile library sizes. The
results, shown in Figure 10, suggest that larger tile sizes are
more efficient at encoding an image to the same number of
bits. This suggests that pursuing a large library of large tiles
may hold promise.

V. CONCLUSIONS

In this paper we have presented a method for obtaining very
high compression levels from imagery, scalable to arbitrarily



Encoded Image Size in Bytes (bits per pixel)

Tile Size
Original 16px × 16px 24px × 24px 32px × 32px 40px × 40px

1470 (.078) 576 (.03) 298 (.015) 187 (.01)

Fig. 9. Results of encoding a selection of images using this method.



Fig. 8. Shown above are the first forty-eight components of the basis we
computed from our training set, working from left to right and then down the
page.

low bandwidth. Seafloor imagery is highly repetitive; we
present one way that image compression can exploit that fact.
While the compression is less effective on detailed objects
in the imagery, like fish or manmade items, the method
seems well suited to more repetitive areas of images, such
as substrate.

VI. FUTURE WORK

During library generation, we currently do not attempt to
discard any duplicate or similar tiles from the library. This is
likely wasteful; careful pruning of the tile library could reduce
the number of bits necessary to represent a tile. This is similar
to the approach taken in normal vector quantization, though
actual tiles would continue to be used rather than summarized
centroids.

To compute tile similarity, we used the L2 distance met-
ric. Were more semantically meaningful information can be
obtained from a tile, such as substrate classification or iden-
tified objects, image encoding could be performed based on
generating a semantically similar image, rather than simply a
visually similar image. This approach suffers from a lack of
generality however, as any encoding would likely be mission-
specific. Pizarro et al. have had luck applying [23] Bag-of-
Words models to seafloor imagery; a similar approach may
prove fruitful.
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